Week 6 Assignment 1 Submission
Click the link above to submit your assignment.
Students, please view the "Submit a Clickable Rubric Assignment" in the Student Center.
Instructors, training on how to grade is within the Instructor Center.
Assignment 1: Financial Portfolio
Due Week 6 and worth 200 points
This assignment consists of two (2) sections:
· A java program file
· A screen shot of the output and a description of your Java program
Label each file name according to the section of the assignment for which it is written. Put both sections together in a single zip file and submit the zip file.
Suppose you are a Java programmer for an investment company. Your Chief Technology Officer (CTO) has asked you to development an interactive Java application that will be used by investment advisors to analyze clients’ bank portfolios. The application must show the investment advisor the total value of the assets, and the value of the individual assets (savings account, stocks investments, and bonds investments).
Section 1: Java Program File
1. Create a Java program according to the specifications stated below:
· Include a composition class called “FinancialPortofolio”
· Public attributes for the composition class must include the client’s first name (string data type), last name (string data type), portfolio number (integer data type), and total value of the portfolio (double data type)
· The composition class must include a savings account class called “SavingsAccount” with the following public attributes: an account number (string), and an account balance (double)
· The composition class must include a bonds class called “Bonds” with the following public attributes: bond name (string), face value (double), and number of bonds (integer)
· The composition class must include a stocks class called “Stocks” with the following public attributes: stock name (string), stock value (float), and number of shares (integer)
· Create setters and getters methods for all the public attributes in each of the classes
· Create objects that prompt the user (investment advisor) to enter all of the values for each of the classes
· The savings account object must add the balance to the portfolio total value
· The bonds object must add the total bonds value (bond value multiplied by the number of bonds) to the portfolio total value
· The stocks object must add the total stocks value (stock value multiplied by the number of shares) to the total portfolio value
· When a user (investment advisor) runs the Java program, it must prompt the advisor to enter the financial portfolio data, savings account data, stocks data, and bonds data. The program must compute the total value of the portfolio for each asset (savings account, stocks, and bonds).
· When all of the data has been entered and the total value of the portfolio has been calculated, the program must display the results using the following format as an example:

Portfolio Name: Jane’s Portfolio
Savings account: Blue Bank ($2000.00)
Bonds: Derby ($3000.00)
Stocks: IBM ($10000.00)
Portfolio value: $15000.00
Section 2: Screen Shot of the Output and Description of Your Java Program

2. Create a screen shot of the interactive session output, and include a description of your Java program.
· Submit a screen shot which shows the output of your Java Program. Note: Go to http://www.take-a-screenshot.org/ if you need a tutorial on taking a screen shot.
· Include a one (1) page description about your program. Note: Use MS Word for your program description, and place the screen shot of the output from your Java program into the Word file as an attached image.
Section 1 and Section 2 will be graded based on the following:
1. The program must compile, execute, produce correct results, and meet all of the specifications stated in Section 1.
Additionally you must:
2. Organize the code for user readability.
3. Organize the code for reusability.
4. Organize the code for efficiency.
5. Provide documentation with embedded comments for reader understanding.
6. Include a one (1) page description about your program.
The specific course learning outcomes associated with this assignment are:
· Demonstrate the proper use and application of syntax in the Java programming language.
· Demonstrate the ability to design, compile, implement, test, and debug simple programs in Java.
· Demonstrate the ability to manipulate numbers and character strings in Java.
· Compare and contrast classes and objects in Java.
· Construct classes through systematic procedures.
· Differentiate between static and non-static methods and variables.
· Demonstrate the ability to program simple and complex decisions in Java.
· Write clearly and concisely about Java programming using proper writing mechanics and technical style conventions.

Grading for this assignment will be based on the following rubric.
	
Points: 200
	Assignment 1: Financial Portfolio

	Criteria
	
Unacceptable
Below 60% F
	Meets Minimum Expectations
60-69% D
	
Fair
70-79% C
	
Proficient
80-89% B
	
Exemplary
90-100% A

	1. Specifications
Weight: 50%
	The program does not compile.
	The program compiles but does not execute.
	The program compiles and executes but produces incorrect results.
	The program compiles, executes, and produces correct results but does not meet all of the specifications.
	The program compiles, executes, produces correct results, and meets all of the specifications.

	2. Readability
Weight: 10%
	The code is not organized and very difficult to read.
	The code is poorly organized and difficult to read.
	The code is partially organized but readable only by someone who knows the expected end result.
	The code is organized and easy to read.
	The code is exceptionally organized and very easy to read.

	3. Reusability and object-oriented programming constructs
Weight: 10%
	The code is not organized for reusability.
	The code is poorly organized for reusability.
	The code is partially organized and some parts of the code could be reused in other programs.
	The code is organized and most of the code could be reused in other programs.
	The code is exceptionally organized and could be reused as a whole or each routine could be reused.

	4. Efficiency
Weight: 10%
	The code is unnecessarily long and appears to be patched together.
	The code is unnecessarily long.
	The code is fairly efficient but sacrifices readability and understanding.
	The code is efficient without sacrificing readability and understanding.
	The code is extremely efficient without sacrificing readability and understanding.

	5. Documentation
Weight: 10%
	No documentation is provided.
	The documentation consists of embedded comments but does not help the reader understand the code.
	The documentation consists of embedded comments and some header comments separating routines.
	The documentation consists of embedded comments and header documentation that is useful in understanding the code.
	The documentation consists of embedded comments and clearly explains what the code is accomplishing and how.

	6. Include a one (1) page description about your program.
Weight: 5%
	Did not submit or incompletely included a one (1) page description about your program.
	Insufficiently included a one (1) page description about your program.
	Partially included a one (1) page description about your program.
	Satisfactorily included a one (1) page description about your program.
	Thoroughly included a one (1) page description about your program.

	7. Clarity, writing mechanics, and formatting requirements
Weight: 5%
	More than 8 errors present
	7-8 errors present
	5-6 errors present
	3-4 errors present
	0-2 errors present

[bookmark: _GoBack]
